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Abstract —The purpose of studying the electromagnetic behav-
ior of superconductors is to identify the relevant material pa-
rameters of superconductive media and to examine their effects

in the solution of classical electromagnetic boundary value prob-

lems. It is shown that a superconductor cannot be simply
treated as a low loss conductoq rather, it should be treated as a
negative dielectric material (with a negative dielectric constant).

This approach is good only for vanishingly small field applica-

tion with frequency significantly smaller than gap frequency, ~c,

and temperature not too close to the critical temperature, TC, of

the superconductor. The electromagnetic of negative dielectric
materials are discussed in terms of causality, perturbation tech-
nique, surface impedance, time-domain interpretation of current

components, and computational electrodynamics.

I. INTRODUCTION

T HE recent discovery of high-TC superconductors has

fundamentally changed the prospects for applications

of superconductive electronics and has generated consid-

erable effort to apply these materials in a number of

areas [1]–[3]. Computer simulation is needed to analyze

and design superconductor components, devices, and cir-

cuits, especially for high frequencies. To pursue this goal,

the electromagnetic of a superconducting medium must

be clearly understood.

The objectives of this paper are to pave the way to

solving superconductive boundary value problems and to

find some possible new applications of superconductors

through a better understanding of these materials from an

electromagnetic point of view. The discussions presented

in this paper do not seek to explore the physics of

superconductors, but rather to use existing physical mod-

els to place superconductive material in its rightful posi-

tion in macroscopic electrodynamics.

In classical electromagnetic, a material medium can be

classified as either a conductor or a dielectric. In reexam-

ining the London constitutive equations for superconduc-

tors, it is shown that a superconductor can be better

described as a negative effective dielectric medium, i.e.,

the dielectric parameter having a negative real part [4],

[5]. The implications of such a classification are discussed

in the following sections with regard to causality, pertur-
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bation technique, surface waves, and computational elec-

tromagnetic.

11. MATEIRIAL MODELS OF SUPERCONDUCTORS

The material parameters of superconductors can be

derived from the Mattis-Bardeen formula based on the

microscopic Bardeen–Cooper–Schrieffer theory or a clm-

sical two-fluid ~model [6]–[10]. The Mattis–Bardeen fcrr-

mula predicts the sudden increase of loss at or above the

gap frequency [6], but the two-fluid model does not.

Despite its failure at the gap frequency, ~C, and at tem-

peratures close to the critical temperature, T=, the two-

fluid model provides reasonable material parameters at

frequencies significantly lower than the gap frequency. In

fact, it is believed also to be a good approximate model

for high-TC superconductors. On the other hand, the

applicability of the Mattis–Bardeen formula to high-TC

superconductor is debatable, because it only describes the

extreme anomalous limit where the coherence length, f,

is large compared with the penetration depth, A. This

limit is not reahzed, for example, in the YBaCuO ceramic

superconductor. Measurements show t~at a typical value

of the penetration depth A(0)= 1500 A for current flow

within the copper-oxygen planes but reveal a consider-

ably larger value for current flow perpendicular to the

planes. Estimates of the coherence length give < =5-20

A, depending on the crystal orientation [111. In this pa-

per, we shall adopt the two-fluid model as the basis for

the ensuing discussions, focusing on the macroscopic fea-

tures of superconductors. In the discussions, we assume a

low-field situation where the current density and mag-

netic field are lmuch smaller than their critical values, so

that we do not have to use the Ginzburg–Landau equa-

tions to characl erize the superconductor.

A. The Two-F[uid Model

In the two-fluid model, one postulates that a fraction of

the conduction electrons is in the lowest-energy, or super-

conducting, state, with the remainder in the excited, or

normal, state, with n, and rz. being the superparticle and

the normal-particle densities, respectively. Under the in-

fluence of external electric fields, the motion of normal

electrons includes the effects of both resistance and iner-
tia. The movement of superconducting electrons or, more

appropriately, superconducting pairs is inertial only. This

phenomenological model was originally used by London

to explain the first microwave experiment with supercon-
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ductors and it is still the framework in which most physi-

cists and engineers visualize many superconductive phe-

nomena [12]. This model is satisfactory for microwave

engineers who wish to develop a working understanding

and an intuitive feeling for the subject without having to

go deeply into the details of complicated theories. The

hydrodynamic equations of the paired and normal elec-

trons can be written as follows:

(1)

and

d($.) (7.)

m dt ‘m~=
– eE4 (2)

where d, is the velocity of the electron pairs, (7. ) is the

average velocity of the normal electrons, which have an

average momentum relaxation time r., and m and e are

the mass and charge of a single electron, respectively.

Electron pairs are treated as collisionless particles, while

the scattering process of normal electrons is approxi-

mately represented by the parameter r..

The total current density is the sum of two parts,

f’~+~ (3)

with

~= – n,ei7, and J: = – n.e($.) (4)

where J; and J; are the super and normal currents,

respectively, n~ and n~ are the previously mentioned

number densities of electron pairs and normal particles,

respectively, and the summation of these two electron

densities is a constant:

n=n. +n~. (5)

The temperature dependence of n, and n. can be closely

approximated by the Gorter–Casimir expressions:

%)4 ~=(a’ “)n

By defining the relative dielectric constant, e,, as follows:

V X ti= j~~Oe,12’= jOeO~+ ~ (7)

where J = – n,eil’ – n~e( d. ), one obtains the dielectric

constant:

(8)

where

e2n,
~2=—

e2n.
~2=—

s mcO n
meO

(9)

are the plasma frequencies of superparticles and normal

particles. An alternative form for (8) in terms of the real

and imaginary parts of ~,(o) is

B. Causality

For the medium to be causal, the real and imaginary

parts of e,(o) must be related by the Kramers-Kronig

relation. Let er(o) = ~’(w)– je’’(co); then

(11)

where P represents the principal value of the integral. It

is readily shown that the dielectric parameter expressed

in (10) does not satisfy (11) and (12), as one would have

expected. This is because the superfluid makes no contri-

bution to the imaginary part of c,(o) and a zero imagi-

nary part in (11) cannot produce a real part other than

unity. This situation can be remedied by considering the

superfluid to be the limiting case of a Iossy medium, i.e.,

‘( (i):r~ ci);Tn

‘J (0(0/7,2+1) + 6J(J7; +1) II. (13)

This limiting process is similar to many other problems in

classical electrodynamics where the medium has to be

considered slightly 10SSYto identify the position of the

integrand poles. It also indicates that the superfluid can-

not be truly lossless to an ac field. Parts (a) and (b) of Fig.

1 are the plots of the complex dielectric constant for

niobium as a function of frequency for different tempera-

tures. As can be seen from the figure, the imaginary part

of the dielectric constant is not equal to zero for the case

o + O, indicating loss in the material because some elec-

trons are not in the superconducting state and can be

scattered by phonons and impurities. This suggests that

we cannot expect a superconductive cavity, once excited,

to oscillate forever.

In the above discussion, we have assumed that the

current of normal electrons and the electric field obey a

local relation. Otherwise, the current density at a point is
determined by an integral involving the electric fields up

to about a coherence length from that point. This anoma-

lous skin effect has to be dealt with by a nonlocal theory

[13]. We have also assumed extremely low fields, where

the nonlinearity of the superconductor can be neglected.

III. THE LONDON EQUATIONS

The hydrodynamic model of a superconductor and its

combination with one of Maxwell’s equations lead to the

well-known London equations. Consider a superconduc-

tor at a very low temperature so that only the superfluid

needs to be considered. The combination of (1) and (4)
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other Maxwell equation,
‘y

(1.8)

and neglecting the displacement current in (18), we obtain

(19)

which is the equation for the magnetic field inside a

superconductim g material. Equation (19) predicts that

magnetic fieldls diminish exponentially in the supercon-

ductor. The displacement current is negligible in (18) at

microwave frequencies. Equation (19) can be solved to

find the penetration depth of the magnetic fields into a

superconductor, which is typically 100 nm.
NORMALIZED TEMPERATURE T/Tc

(a)

IV. THE MEISSNER EFFECT
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A superconductor is often considered to be a lossless

conductor at T = O. Whether there is any difference be-

tween a superconductor and a perfect conductor was not

an issue until the Meissner experiment was performed

[14]. It is normally accepted in the superconductor com-

munity that classical field theory alone fails to explain the

Meissner effect, that is, the experimental fact that dc

magnetic flux is displaced from the interior of a supercon-

ductor.

:
cd

A. Static Approachlo”~j
!,,

;!: ;:! ;:
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Equation (19) supports the Meissner effect in that at a

minute distance from the surface, the magnetic fields are

practically zero. It is a well-known fact that a dc magnetic

field readily passes through a piece of conductor such as

silver, copper,, or any other nonmagnetic material. The

classical electrostatic theory for the dc case states that

NORMALIZED TEMPERATURE T/Tc

(b)

Fig. 1. (a) Calculated real part of the complex dielectric constant of

niobium – d as a function of the normalized temperature for various
frequencies (10 GHz to 100 GHz at a 10 GHz step) based on the

two-fluid model. (b) Calculated imaginary part of the complex dielectric

constant of niobium e“ as a function of the normalized temperature for
various frequencies (10 GHz to 100 GHz at a 10 GHz step) based on the
two-fluid model.

VX2=0 (20)

and from (15) it follows that

:=O. (21)yields the first London equation,

Therefore, the mag~etic fields are “locked in” as the

material is cooled into the superconducting state, contra-

dicting the Meissner effect. Unfortunately, when we de-

rived (17), from which (19) was obtained, we excluded dc.

Consequently, it is not proper to use it to support the

Meissner effect without considering the history of the

system.

(14)

where A = m I ne 2. Substituting (14) into Faraday’s law,

Vxi=–: (15)

we have the following relation:

;[AVx~+i]=O. (16) B. Dynamic Approach

To reconcile classical field theory with Meissner’s ex-

periment, we need to consider dc as a limiting case of

dynamics. In fact, strictly speaking, Meissner’s experiment

was not done at dc. In the experiment, a superconductor

specimen was placed in a dc magnetic field at room

temperature. ‘The material was then cooled until it reached

the superconducting state. Since, in the process of cool-

Excluding dc, we obtain the second London equation,

(17)

It is noted that London derived the above equation using

general arguments of quantum mechanics, so the dc case

does not have to be excluded. Substituting (17) into the
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kg, the

material

tric and

dielectric parameter or the conductivity of the

changed with time, the interior fields, both elec-

magnetic, were functions of time, even though

the applied field was dc.

From the dynamic point of view, it is not difficult to

visualize that as a material becomes superconducting, the

tangential components of the electric field on the surface

must gradually vanish and it follows that the normal

component of the magnetic flux density also must vanish.

The quasi-static solution to this problem results in sepa-

rate solutions for the magnetic and electric fields. In

order to satisfy the continuity condition for the normal

component of the magnetic flux density, the permeability

of the material must approach zero, i.e., p ~ O. In order

to satis& the vanishing tangential electric field, the corre-

sponding boundary condition is I~ I ~ ~.

As p a O, the magnetic flux density in the material

must vanish, which is consistent with Meissner’s experi-

ment. And, lim ~+ ~le,(w)l - cc is also consistent with the

previous discussions of the material properties of super-

conductors. Thus, Meissner’s experiment should be viewed

through its time history instead of as a strictly dc event. In

that case, classical electrodynamics theory will be consis-

tent with the Meissner effect. The above qualitative dis-

cussion of the Meissner effect does not yield a penetra-

tion depth for the fields, because we have assumed the

tangential electric field on a superconductive surface to

be exactly zero. In reality, there is a minute residual field

inside the superconductor, as shown by the solution to the

London equation. This becomes important in samples

with dimensions of the order of the penetration depth.

The above quasi-static approach was used by Bethe in

small-hole theory in microwave coupling [15]. In that case

the magnetic field surrounding a perfectly conducting

magnetic material was to be calculated. Bethe’s quasi-

static field results in ● e O and p -+ ~, which is the dual

case of the above discussion. There is already a consider-

able amount of theoretical and experimental evidence for

the validity of Bethe’s theory.

V. WHAT IS A SUPERCONDUCTOR?

A material is usually classified as a dielectric, a conduc-

tor, or a semiconductor. The name superconductor imme-

diately implies that it belongs to the conductor group.

Similarly, the name dielectric immediately suggests an
insulator. Actually, in the extreme case of a dielectric

material with c, + t m, the distinction between a dielec-

tric and a conductor is not so clear.

Consider the Maxwell equation

vx17=(jEoer +(@ (22)

When w ~ ~ and ~+ O, this implies a perfect conductor.

The continuity of the tangential component of the electric

field, Et, leads to Et = O on the surface. Indeed, ~, ~ ~ co

also leads to the same bounda~ condition. Therefore,

under ideal conditions, a perfect conductor (o - CO)is not

distinguishable from a perfect hyperdielectric material

(Er + * m).

Normal state

* a2
.-
>.- (Imaginary)
$
-u
z
v

(R;al)

0 1.0
T/Tc

Fig. 2. Real and imagmary components of the conductivity a = crl – JU2
as a function of temperature (after [8]).

Accepting (8) as a legitimate formula for the dielectric

constant of a superconductor, one immediately concludes

that for ~ <0,,, a superconductor is actually a negative

dielectric material. Since o, is of the order of 1–10 THz

for most superconductors, we can safely assume that

superconductors are negative dielectric materials, espe-

cially at dc. Fig. 2 shows a graph of the conductivity versus

temperature of a superconductor at nonzero frequency,

which has been used frequently in the literature. The

conductivity is shown to approach infinity along the nega-

tive imagina~ axis as the temperature approaches abso-

lute zero. Therefore, a superconductor can be regarded as

a material with negative imaginary conductivity or one

with a negative real dielectric constant. Since an imagi-

nary value for a material constant loses its meaning at dc

and since many experiments on superconductors have

been done at dc, classifying superconductors as negative

dielectric materials does have its legitimacy and will sim-

plify the computation of superconductive boundary prob-

lems.

VI. ELECTROMAGNETICS OF NEGATIVE DIELECTRICS

Once a superconductor is identified as a negative di-

electric material, many of the myths surrounding these

materials are dispelled. One can just solve Maxwell’s

equation as with any other penetrable material. Of course,

the dielectric constant has to be properly evaluated. Con-

ventional perturbation methods are applicable to a super-

conductor, provided that the surface impedance (or ad-

mittance) can be determined. Some basic properties of

negative dielectrics are now discussed.

A. Energy Density in Negative Dielectrics

As we know from basic electromagnetic theory, the

energy density in an electric field can be expressed as

WE= &E(t)2. (23)
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Fig. 3. Complex surface impedance for dielectric, conductors, and
superconductors.

For a harmonic field, the time average energy density is

WE= :EOE,E” E. (24)

For superconductor or negative dielectrics, the dielectric

constant is complex and frequency dependent: e(o)=

●’(co) – je’’(o) with e’(o) <0. In the case of high-TC mate-

rials, dielectric constants are even anisotropic. Under

those conditions, the above formula is no longer valid.

For a dispersive medium, we have to consider a wave

packet instead of a “single” frequeney, which results in

the following equation for a source-free, lossless medium

[16]:

where (W) is the time average energy density. For loss-

less, anisotropic, dispersive dielectrics, we have the fol-

lowing expression for the electric energy density [17]:

(26)

where the dielectric constant is a dyadic. The electric

energy stored in a dielectric system is potential energy

while the magnetic energy is kinetic. For a negative-

dielectric-constant medium, the electric energy becomes

kinetic and is associated with the motion of the paired

electrons.

B. Surface Impedance

The surface impedance of a dielectric, a normal metal,

and a superconductor (negative dielectric) are shown in

Fig. 3. All these materials have their surface impedances

in the first quadrant of the complex plane. The surface

impedance of a (positive) lossless dielectric material lies

on the real axis, a good conductor is along a 45° line, and

a superconductcfir (negative dielectric) is close to or along

the positive imaginary axis, depending upon the operation

temperature. As the dielectric constant approaches infim

ity or the conductivity approaches infinity, the surface

impedances approach zero along their respective loci,

When they approach the origin, we cannot distinguish a

superconductor from a perfect conductor microscopi-

cally. However, in reality, even in the superconducting

state, the surface impedance of a superconductor does

not reach zero. Instead, it stays at a point on the imagi-

nary axis close to the origin, as indicated by the London

equations. The surface inductive reactance of a good

conductor is the same as its resistance, but the reactance

of a superconductor is much larger than its resistance. It

is this reactance that makes the electric and magnetic

fields almost 90° out of phase, so the loss is quite small.

The surface impedance of a superconductor can be ob-

tained from its conductivity,

(27)

where u = 01 – juz is the complex conductivity of a Su-

perconductor, with Oz >0 and al << m2. From the two-

fluid model, al and U2 can be expressed as

Since o~. is small, and nn <<n. for a superconductor at

temperature far below TC, we expect ml/ U2 to be ve~

small. That means that the surface resistance is very

small. At 10 GHz, the microwave surface resistance of a

YBCO film on LaA103 substrate has been found to be as

low as 20-50 JLQ at 4.2 K and 300-400 PO at 77 K.

These surface resistance values are lower than those for

Cu at 4.2 K and 77 K by factors of 120 and 15, respec-

tively [18]–[21]. Such a small surface resistance gives a

small power 10ss,

WL=~Re(Z$)l~. (29)

One might expect that superconductors will have a great

impact on microwave and millimeter-wave technology,

especially on devices and circuits where losses have been

a major performance limitation, such as small antennas,

phase shifters, filters, resonators, delay lines, and some

analog signal processing circuits [22]–[31].

C. Surface Wave

A surface wave is a wave that travels along a surface

without a lessening of its total time average Poynting

vector integrated over a large closed loop, i.e.,

(30)
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Fig. 4. A dipole with a distance h above superconductor plane.

where ~= ~ Re [ ~ x l?*], c is a large closed loop on the

surface, and ~ is a unit radial vector tangent to the

surface and normal to c. For a surface wave, the power,

W, should be independent of the radius of the closed

loop, c. That is t~ say, as the int~gral loop+ extends to

infinity (p -+~), IPI ~ A/p, i.e., IEI or ZOIHI ~ B/fi,

where A and B are two constants. Normally, a surface

wave can be created between two planar surfaces of total

reflection, such as a dielectric layer or a substrate with

a conducting ground, and the physics of’ such a surface

wave is well understood [32], [33]. However, Sommerfeld,

in his treatment of radiation over a 10SSY ground, dis-

covered that a surface wave could also be obtained with

only a single dielectric interface. The configuration of

Sommerfeld’s analysis is depicted in Fig. 4. The potentials

of the electromagnetic fields, II, are represented by

Fourier–Bessel integrals, known as Sommerfeld’s inte-
grals [33]. Parts of these integrals may be represented by

residual integrals, which result in

k2
fIo = 2~j——‘up I&)( pr ) e - ~,qz ,

K
z >0 (31)

k;
11~“P= 2~j —H~2)(pr)e-mz,

K
Z <0 (32)

where H$2) is the cylindrical Hankel’s function of

the second kind and K is a known constant. Also, k,uP is

the wavenumber in the superconductor in the lower

half-space, and p is the pole of the integrand of the

Sommerfeld integrals:

or

k:k:uP

‘2= k;+ k:uP “

If Ik,uPl >> ko, we may approximate p by

[11 k:
p=kol–.—

2 k;”p “

(33)

(34)

(35)

The above formulas were derived by Sommerfeld. The

asymptotic forms of (31) and (32), as Ipr ] ~ WI, are as

follows:

r2rrj k~”p
rIo=2 — _e-jp,-~mZ, z 20 (36)

pr K

F

2rj k;
II sup =2

_ –e-,w+~mz, .<0. (37)
pr K

At the z = O plane, the potentials satisfy the conditions of

a surface wave created by a localized source. If we inspect

(35) closely, we find that if the lower half-space were an

ordinary dielectric material, which has a positive dielec-

tric constant, then p < kO. Thus, the waves in (36) and

(37) would be fast waves, which would radiate and could

not become a surface wave. However, the waves can be

retarded by losses in the lower half-space. That is why the

Sommerfeld type of surface wave can only be excited if

there is loss in the medium. The situation is quite differ-

ent for a negative dielectric material or a superconductor.

Since in that case k$”P <0 and p > kO, the waves in (36)

and (37) are naturally slow, and there is a natural surface

wave. However, for a superconducting state Ik~”P1>> k;, p

is practically equal to ko; therefore the surface wave, if

excited, would not be stable. One method of getting a

stable surface wave is to operate the system at a tempera-

ture near but below TC. Even though in that region the

10SSmay increase, it may still be much less than conven-

tional conduction loss.

VII. CURRENT DENSITIES

Traditionally, Maxwell’s equations are studied in the

frequency domain, where a dispersive dielectric medium

is easily represented by the equation

VX17= jf3,(co)l?. (38)

However, the real and imaginary parts of ~(w) must be

related by the Kramers-Kronig relations, (11) and (12).

The Kramers-Kronig relations were derives from the

causality relation between the flux density, D, and E+ in

the time domain,

b(t) =/”G(T)@ –T)(h (39)
o

where G(7) -0 for ~ <0. The Fourier transform of such

a function results in the Kramers-Kronig relations of(11)

and (12).

It is of interest to obtain some physical insight by

relating e(~) and G(7). The time-domain representation

of (38) is

VXii=:~mG(,)E(t-T) dT=/
mdG(T)

--# Z(t-T) dr.
o

(40)

The first integral of (40) represents the electric flux den-

sity; the second, obtained using integration by parts, rep-
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TABLE I

CURRENTDENSITIES IN THE TIME AND FREQUENCYDOMAINS

Current
Type

Expression
aG(t)

G(t) in TD ~
in FD

in TD

Displacement joeo~ CoC?(t)

Conduction FE Utxt)
.
‘

+

Relaxation
(jO~yn)E

Super (l@(r)

resents the total current density. Consider the time-

domain Maxwell’s equation

VX17=jw5+Z (41)

The first term of the right:hand ~de of (41) is the dis-

~lacement current, where D = eOE. The current density,

J, may occur in different forms in+ di~erent+cases. For

conventional conduction ~urrent, J = .lC= ~E, and in a++
superconductor, J = J. + J,, where

The corresponding fun&ions G(t) and aG /at of each

current are listed in Table I.

It is obvious that the terms G(t)= ~~(t) and aG/i?t =

u~(t ) correspond to the displacement and conduction

current, respectively. In those cases, the flux densities and

current response to the electric field are instantaneous

and they disappear as soon as the electric field disap-

pears. The normal current corresponds to an exponen-

tially decaying dG /dt term; i.e., the current depends not

only on the instantaneous value of the field but also on

the history of the field. Hence, it does not obey Ohms

law. In view of the possible confusion between the normal

current and the ohmic conduction current, we have re-

named the normal current the relaxation current in the

table. This term contains inertial effects while the conven-

tional conduction current does not. The supercurrent is

the limiting case of the “relaxation current” when Y.( =

l/Tn) -+ O, i.e., the case when the relaxation time be-

comes infinite. We may consider the conduction current

and supercurrent as two limiting cases of the “relaxation

current,” the conduction current for to ~ O and the super-

current for y. + O. In the former, the relaxation time

tends to zero and is collision dominated (to: /(.jo + y,) ~

o: /y. = ne2\ my. = a). In the latter, the relaxation time

is infinite and is purely inertial, They would respond very
differently to electromagnetic fields, a fact that has also

been discussed by Pippard [34].

The above limiting cases lead us to believe that the

“perfect conductor” cannot exist except at dc since -y.

must be much larger than @ for the “relaxation current”

to become conduction current.

VIII. COMPUTATIONAL CONSIDERATIONS

In Section IV, we have mentioned that the solutions of

electromagnetic boundary value problems are not ariy

more complicated for a superconductor than for any

other penetrable medium, once it is treated as a negative

dielectric material. While that statement is obviously true

in the frequency domain, it is not so obvious in the time

domain, because a superconductive medium is dispersive.

The complicaticm in the time-domain computation involv-

ing a superconductor arises from the necessity of comput-

ing the convolution integral,

D(t) = C/”e-y”’E(t – 7) dT (42)
o

where c is a constant. In reality, the integral of (42) can

be calculated without much overhead in storage for past

electric fields. A change of variables leads to

.—~
D(t) =ce-y”f

J
eyn~~(g) dg= –~e-~n~

J
r e~”g,il(g) dg.

t —m

(43)

The integral in (43) can be “accumulated” in the process

of time-domain computation. Since y. is a positive num-

ber, the multiplier e ‘Y”~ becomes smaller and the integra-

tion term gets larger as t increases. Therefore (43) is not

a stable form for computation. In the numerical integra-

tion of (43), however, a little manipulation results in

D(nAt) =, D[(n–l)At] e-~nA’–cE(nAt)At (44)

which gives a very stable recursive formula. D(n A t ) is the

field at the nth time step, Since a superconducting medium

described by the two-fluid model has the form of (42), its

time-domain computation is quite simple even though the

medium is dispersive,

IX. CONCLUSION

This paper presents an understanding of superconduc-

tive materials in the context of classical electrodynamics.

The basics of its electromagnetic properties are presented

and a possible surface wave phenomenon is suggested.

The relationships between current densities and electric

fields are depict ed in the time domain. A new interpreta-

tion of the N[eissner effect has been presented. Tlhe

phrases “negative dielectric” and “relaxation. current”

may sound controversial and unnecessary. However, they

are introduced to avoid confusion for most electromag-

netic engineers, who have a preconceived understanding

of the name “conductor” and the implications of the

name “normal conductor.” The electromagnetic interpre-

tation of the Meissner effect is an effort to remove the

mystery associated with superconductors, which, some-

how, seem to defy the logic of classical electromagnetic

theory. Although the physics of superconductors are stud-

ied at the quartum level, the macroscopic properties of

the material from which it is derived must be consistent

with the classical theory of electromagnetic. We believe

the discussions presented in this paper will be helpful to
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electrical engineers involved with the applications of su-

perconductors. Solving classical electrodynamics boundaty

value problems will be an unavoidable step in the even-

tual applications of these materials in microwave and

millimeter-wave devices and electronics.
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