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Electromagnetics of Superconductors
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Abstract —The purpose of studying the electromagnetic behav-
ior of superconductors is to identify the relevant material pa-
rameters of superconductive media and to examine their effects
in the solution of classical electromagnetic boundary value prob-
lems. It is shown that a superconductor cannot be simply
treated as a low loss conductor; rather, it should be treated as a
negative dielectric material (with a negative dielectric constant).
This approach is good only for vanishingly small field applica-

tion with frequency significantly smaller than gap frequency, f_,

and temperature not too close to the critical temperature, T, of
the superconductor. The electromagnetics of negative dielectric
materials are discussed in terms of causality, perturbation tech-
nique, surface impedance, time-domain interpretation of current
components, and computational electrodynamics.

I. INTRODUCTION

HE recent discovery of high-7. superconductors has

fundamentally changed the prospects for applications
of superconductive electronics and has generated consid-
erable effort to apply these materials in a number of
areas [1]-[3]. Computer simulation is needed to analyze
and design superconductor components, devices, and cir-
cuits, especially for high frequencies. To pursue this goal,
the electromagnetics of a superconducting medium must
be clearly understood.

The objectives of this paper are to pave the way to
solving superconductive boundary value problems and to
find some possible new applications of superconductors
through a better understanding of these materials from an
electromagnetic point of view. The discussions presented
in this paper do not seek to explore the physics of
superconductors, but rather to use existing physical mod-
els to place superconductive material in its rightful posi-
tion in macroscopic electrodynamics.

In classical electromagnetics, a material medium can be
classified as either a conductor or a dielectric. In reexam-
ining the London constitutive equations for superconduc-
tors, it is shown that a superconductor can be better
described as a negative effective dielectric medium, i.e.,
the dielectric parameter having a negative real part [4],
[5]. The implications of such a classification are discussed
in the following sections with regard to causality, pertur-
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bation technique, surface waves, and computational elec-
tromagnetics.

II. MATERIAL MODELS OF SUPERCONDUCTORS

The material parameters of superconductors can be
derived from the Mattis—-Bardeen formula based on the
microscopic Bardeen—-Cooper—Schrieffer theory or a clas-
sical two-fluid model [6]-[10]. The Mattis—Bardeen for-
mula predicts the sudden increase of loss at or above the
gap frequency [6], but the two-fluid model does not.
Despite its failure at the gap frequency, f,., and at tem-
peratures close to the critical temperature, T,, the two-
fluid model provides reasonable material parameters at
frequencies significantly lower than the gap frequency. In
fact, it is believed also to be a good approximate model
for high-T, superconductors. On the other hand, the -
applicability of the Mattis—Bardeen formula to high-7,
superconductor is debatable, because it only describes the
extreme anomalous limit where the coherence length, ¢,
is large compared with the penetration depth, A. This
limit is not realized, for example, in the YBaCuO ceramic
superconductor. Measurements show that a typical value
of the penetration depth A(0) = 1500 A for current flow
within the copper—oxygen planes but reveal a consider-
ably larger value for current flow perpendicular to the
Qlanes. Estimates of the coherence length give £ = 5-20
A, depending on the crystal orientation [11]. In this pa-
per, we shall adopt the two-fluid model as the basis for
the ensuing discussions, focusing on the macroscopic fea-
tures of superconductors. In the discussions, we assume a
low-field situation where the current density and mag-
netic field are much smaller than their critical values, so
that we do not have to use the Ginzburg-Landau equa-
tions to characterize the superconductor.

A. The Two-Fluid Model

In the two-fluid model, one postulates that a fraction of
the conduction electrons is in the lowest-energy, or super-
conducting, state, with the remainder in the excited, or
normal, state, with n; and n, being the superparticle and
the normal-particle densities, respectively. Under the in-
fluence of external electric fields, the motion of normal
electrons includes the effects of both resistance and iner-
tia. The movement of superconducting electrons or, more
appropriately, superconducting pairs is inertial only. This
phenomenological model was originally used by London
to explain the first microwave experiment with supercon-
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ductors and it is still the framework in which most physi-
cists and engineers visualize many superconductive phe-
nomena [12]. This model is satisfactory for microwave
engineers who wish to develop a working understanding
and an intuitive feeling for the subject without having to
go deeply into the details of complicated theories. The
hydrodynamic equations of the paired and normal elec-
trons can be written as follows:

@ _
a ¢

(1)
and
d<u,>
m +m 2
dt T, )
where 7, is the velocity of the electron pairs, (7)) is the
average velocity of the normal electrons, which have an
average momentum relaxation time r,, and m and e are
the mass and charge of a single electron, respectively.
Electron pairs are treated as collisionless particles, while
the scattering process of normal electrons is approxi-
mately represented by the parameter r,,.
The total current density is the sum of two parts,

(T,) .

=—ek

T=T+1, (3)
with

-

I = and J, = —n,e{7,) (4)

where J_; and ]_,: are the super and normal currents,
respectively; n, and n, are the previously mentioned
number densities of electron pairs and normal particles,
respectively, and the summation of these two electron
densities is a constant:

-
— N eU;

n=n,+n,. (©))

The temperature dependence of n, and n,, can be closely
approximated by the Gorter—Casimir expressions:

n_ [T om, [TV ]

no T, n \T,)° (6)
By defining the relative dielectric constant, €,, as follows:

VXH= jweoerﬁ= jweOE+ T (N

where J = —n_ ev, —n,e{0,), one obtains the dielectric
constant:
2 2

( 1 wS wnTn 8
e(w)=1-—S+—"""7"—
(@) w?  jo(jor,+1) (®)
where
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are the plasma frequencies of superparticles and normal
particles. An alternative form for (8) in terms of the real
and imaginary parts of €,(w) is
( ) 1 0)32 wZT 2 _ (1)2’7'
€Elw)= - 5 =
r 2 w( 272+ 1)

(10)

w? @rti+1
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B. Causality

For the medium to be causal, the real and imaginary
parts of €(w) must be related by the Kramers—Kronig
relation. Let €,(w) = €(w)— je"(w); then

e(m)—l+——P ”(5) (11)
—wé—w
® € 1

ctor-m L 4O f}w v

where P represents the principal value of the integral. It
is readily shown that the dielectric parameter expressed
in (10) does not satisfy (11) and (12), as one would have
expected. This is because the superfluid makes no contri-
bution to the imaginary part of ¢,(w) and a zero imagi-
nary part in (11) cannot produce a real part other than
unity. This situation can be remedied by considering the
superfluid to be the limiting case of a lossy medium, i.e.,

( ) 1 1 (()?TSZ (1)’77'2
€ (W)= 1M - —
" T, wZTSZ +1 a)ZT,% +1

[ el W, T,
No@ ) a2+ || P

This limiting process is similar to many other problems in
classical electrodynamics where the medium has to be
considered slightly lossy to identify the position of the
integrand poles. It also indicates that the superfluid can-
not be truly lossless to an ac field. Parts (a) and (b) of Fig.
1 are the plots of the complex dielectric constant for
niobium as a function of frequency for different tempera-
tures. As can be seen from the figure, the imaginary part
of the dielectric constant is not equal to zero for the case
w # 0, indicating loss in the material because some elec-
trons are not in the superconducting state and can be
scattered by phonons and impurities. This suggests that
we cannot expect a superconductive cavity, once excited,
to oscillate forever.

In the above discussion, we have assumed that the
current of normal electrons and the electric field obey a
local relation. Otherwise, the current density at a point is
determined by an integral involving the electric fields up
to about a coherence length from that point. This anoma-
lous skin effect has to be dealt with by a nonlocal theory
[13]. We have also assumed extremely low fields, where
the nonlinearity of the superconductor can be neglected.

III. THE LoNDON EQUATIONS

The hydrodynamic model of a superconductor and its
combination with one of Maxwell’s equations lead to the
well-known London equations. Consider a superconduc-
tor at a very low temperature so that only the superfluid
needs to be considered. The combination of (1) and (4)



MEI AND LIANG: ELECTROMAGNETICS OF SUPERCONDUCTORS

12
10 R H
® i f=10 GHz
_\'\
- q T /
£z o] —
= 3 T
[T E T
c9 Z . S N \
= O i — \\
< © 1010 A —
o Q E T \
2 fc ] t:§§§ \
1 ; o iy
‘f‘r‘(uﬂ o f=100 GHz RS
=~ 107 5
w E \
ja) ] H \
108

00 01 02 03 04 05 06 07 08 09 10
NORMALIZED TEMPERATURE T/T,
(@

€

- -

o o

o N
TR

(5

—_
o

—
o
I

Nw

p—y
o

-

-
o

[T T T S W AR R TTTT

jure
(=]
[=]

IMAGINARY PART OF
THE DIELECTRIC CONSTANT
<)

-17 : H . . . H . .\
00 01 02 03 04 05 06 07 08 09 10
NORMALIZED TEMPERATURE T/T,
(b)

Fig. 1. (a) Calculated real part of the complex diclectric constant of
niobium — €’ as a function of the normalized temperature for various
frequencies (10 GHz to 100 GHz at a 10 GHz step) based on the
two-fluid model. (b) Calculated imaginary part of the complex dielectric
constant of niobium €” as a function of the normalized temperature for
various frequencies (10 GHz to 100 GHz at a 10 GHz step) based on the
two-fluid model.
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yields the first London equation,

AaJ? E 14
il (14)
where A = m /ne?. Substituting (14) into Faraday’s law,
VXE B 15
X —_— e ——
o (15)
we have the following relation:
a P —
a_t[AVXJc+B]=0' (16)
Excluding dc, we obtain the second London equation,
AVXJ +B=0. (17)

It is noted that London derived the above equation using
general arguments of quantum mechanics, so the dc case
does not have to be excluded. Substituting (17) into the
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other Maxwell equation,

L E
VXH=€§+Js (18)
and neglecting the displacement current in (18), we obtain
v><v><§=—%§ (19)

which is the equation for the magnetic field inside a
superconducting material. Equation (19) predicts that
magnetic fields diminish exponentially in the supercon-
ductor. The displacement current is negligible in (18) at
microwave frequencies. Equation (19) can be solved to
find the penetration depth of the magnetic fields into a
superconductor, which is typically 100 nm.

1V. THE MEissNER EFFECT

A superconductor is often considered to be a lossless
conductor at 7 = 0. Whether there is any difference be-
tween a superconductor and a perfect conductor was not
an issue until the Meissner experiment was performed
[14]. 1t is normally accepted in the superconductor com-
munity that classical field theory alone fails to explain the
Meissner effect, that is, the experimental fact that dc
magnetic flux is displaced from the interior of a supercon-
ductor.

A. Static Approach

Equation (19) supports the Meissner effect in that at a
minute distance from the surface, the magnetic fields are
practically zero. It is a well-known fact that a dc magnetic
field readily passes through a piece of conductor such as
silver, copper, or any other nonmagnetic material. The
classical electrostatic theory for the dc case states that

VXE=0 (20)
and from (15) it follows that
5 0 21
Fraall (21)

Therefore, the magnetic fields are “locked in” as the
material is cooled into the superconducting state, contra-
dicting the Meissner effect. Unfortunately, when we de-
rived (17), from which (19) was obtained, we excluded dc.
Consequently, it is not proper to use it to support the
Meissner effect without considering the history of the
system.

B. Dynamic Approach

To reconcile classical field theory with Meissner’s ex-
periment, we need to consider dc as a limiting case of
dynamics. In fact, strictly speaking, Meissner’s experiment
was not done at dc. In the experiment, a superconductor
specimen was placed in a dc¢ magnetic field at room
temperature. The material was then cooled until it reached
the superconducting state. Since, in the process of cool-
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ing, the dielectric parameter or the conductivity of the
material changed with time, the interior fields, both elec-
tric and magnetic, were functions of time, even though
the applied field was dc.

From the dynamic point of view, it is not difficult to
visualize that as a material becomes superconducting, the
tangential components of the electric field on the surface
must gradually vanish and it follows that the normal
component of the magnetic flux density also must vanish.
The quasi-static solution to this problem results in sepa-
rate solutions for the magnetic and electric fields. In
order to satisfy the continuity cordition for the normal
component of the magnetic flux density, the permeability
of the material must approach zero, i.e., p — 0. In order
to satisfy the vanishing tangential electric field, the corre-
sponding boundary condition is |e| — o,

As u— 0, the magnetic flux density in the material
must vanish, which is consistent with Meissner’s experi-
ment. And, lim, _, ole,(w)| = is also consistent with the
previous discussions of the material properties of super-
conductors. Thus, Meissner’s experiment should be viewed
through its time history instead of as a strictly dc event. In
that case, classical electrodynamic theory will be consis-
tent with the Meissner effect. The above qualitative dis-
cussion of the Meissner effect does not yield a penetra-
tion depth for the fields, because we have assumed the
tangential electric field on a superconductive surface to
be exactly zero. In reality, there is a minute residual field
inside the superconductor, as shown by the solution to the
London equation. This becomes important in samples
with dimensions of the order of the penetration depth.

The above quasi-static approach was used by Bethe in
small-hole theory in microwave coupling [15]. In that case
the magnetic field surrounding a perfectly conducting
magnetic material was to be calculated. Bethe’s quasi-
static field results in € = 0 and w -—» <, which is the dual
case of the above discussion. There is already a consider-
able amount of theoretical and experimental evidence for
the validity of Bethe’s theory.

V. WHAT 18 A SUPERCONDUCTOR?

A material is usually classified as a dielectric, a conduc-
tor, or a semiconductor. The name superconductor imme-
diately implies that it belongs to the conductor group.
Similarly, the name dielectric imrnediately suggests an
insulator. Actually, in the extreme case of a dielectric
material with e, — +o, the distinction between a diclec-
tric and a conductor is not so clear.

Consider the Maxwell equation

VXﬁ=(jeoe,+(r)E. (22)
When o - and E — 0, this implies a perfect conductor.
The continuity of the tangential component of the electric
field, E,, leads to E, = 0 on the surface. Indeed, €, — £
also leads to the same boundary condition. Therefore,
under ideal conditions, a perfect conductor (¢ — %) is not
distinguishable from a perfect hyperdielectric material
(e, » £ ).
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Fig. 2. Real and imagmary components of the conductivity o = o, — jo,
as a function of temperature (after [8]).

Accepting (8) as a legitimate formula for the dielectric
constant of a superconductor, one immediately concludes
that for w < w,, a superconductor is actually a negative
dielectric material. Since w, is of the order of 1-10 THz
for most superconductors, we can safely assume that
superconductors are negative dielectric materials, espe-
cially at dc. Fig. 2 shows a graph of the conductivity versus
temperature of a superconductor at nonzero frequency,
which has been used frequently in the literature. The
conductivity is shown to approach infinity along the nega-
tive imaginary axis as the temperature approaches abso-
lute zero. Therefore, a superconductor can be regarded as
a material with negative imaginary conductivity or one
with a negative real dielectric constant. Since an imagi-
nary value for a material constant loses its meaning at dc
and since many experiments on superconductors have
been done at dc, classifying superconductors as negative
dielectric materials does have its legitimacy and will sim-
plify the computation of superconductive boundary prob-
lems.

V1. ELECTROMAGNETICS OF NEGATIVE DIELECTRICS

Once a superconductor is identified as a negative di-
electric material, many of the myths surrounding these
materials are dispelled. One can just solve Maxwell’s
equation as with any other penetrable material. Of course,
the dielectric constant has to be properly evaluated. Con-
ventional perturbation methods are applicable to a super-
conductor, provided that the surface impedance (or ad-
mittance) can be determined. Some basic properties of
negative dielectrics are now discussed.

A. Energy Density in Negative Dielectrics

As we know from basic electromagnetic theory, the
energy density in an electric field can be expressed as

1 o]
Wi =S eoe, E(1)" (23)
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Fig. 3. Complex surface impedance for dielectric, conductors, and
superconductors.

For a harmonic field, the time average energy density is

W= %eoe,E.-E. (24)
For superconductor or negative dielectrics, the dielectric
constant is complex and frequency dependent: e(w)=
€(w)— je'(w) with €'(w) < 0. In the case of high-T, mate-
rials, dielectric’ constants are even anisotropic. Under
those conditions, the above formula is no longer valid.
For a dispersive medium, we have to consider a wave
packet instead of a “single” frequency, which results in
the following equation for a source-free, lossless medium
[16):

W 1 i (awe’
! dw

E+Mgﬁﬁﬁ] (25)
0

where (W) is the time average energy density. For loss-
less, anisotropic, dispersive dielectrics, we have the fol-
lowing expression for the electric energy density [17]:

1.
W,y =—E*.
W) 7

dw€

- (26)

where the dielectric constant is a dyadic. The electric
energy stored in a dielectric system is potential energy
while the magnetic energy is kinetic. For a negative-
dielectric-constant medium, the electric energy becomes
kinetic and is associated with the motion of the paired
electrons. :

B. Surface Impedance

The surface impedance of a dielectric, a normal metal,
and a superconductor (negative dielectric) are shown in
Fig. 3. All these materials have their surface impedances
in the first quadrant of the complex plane. The surface
impedance of a (positive) lossless dielectric material lies
on the real axis, a good condtictor is along a 45° line, and

.0y
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a superconductor (negative dielectric) is close to or along .
the positive imaginary axis, depending upon the operation
temperature. As the dielectric constant approaches infin-
ity or the conductivity approaches infinity, the surface
impedances approach zero along their respective loci.
When they approach the origin, we cannot distinguish a
superconductor from a. perfect conductor macroscopi-
cally. However, in reality, even in the superconducting

_state, the surface impedance of a superconductor does

not reach zero. Instead, it stays at a point on the imagi-
nary axis close to the origin, as indicated by the London
equations. The surface inductive reactance of a good
conductor is the same as its resistance, but the reactance
of a superconductor is much larger than its resistance. It
is this reactance that makes the electric and magnetic
fields almost 90° out of phase, so the loss is quite small.
The surface impedance of a.superconductor can be ob-
tained from its conductivity,

7 \/ir \//wﬂo . oyt joy
-/ = =1/ joun—" =
5 € o / M00'12+022
oy (1o
z%—9—4+1 27)
oy \20,

where o =g, — jo, is the complex conductivity of a su-
perconductor, with o, >0 and ¢; < o,. From the two-
fluid model, oy and o, can be expressed as

n,eX(wr,)’

mw(l + sz,%)

2 2
n,e°r, n.e

R

. (28)

7T e
Since wr, is small, and n, << n, for a superconductor at
temperature far below 7,, we expect o, /o, to be very
small. That means that the surface resistance is very
small. At 10 GHz, the microwave surface resistance of a
YBCO film on LaAlOj; substrate has been found to be as

“low as 20-50 uQ at 42 X and 300-400 pf) at 77 K.

These surface resistance values are lower than those for
Cu at 4.2 K and 77 K by factors of 120 and 15, respec-
tively [18]-[21]. Such a small surface resistance gives a
small power loss, - ‘

1 , ‘
WL=§Re(ZS)|JT. (29) .

One might expect that superconductors will have a great

impact on microwave and millimeter-wave technology,
especially on devices and circuits where losses have been
a major performance limitation, such as small antennas,

‘phase shifters, filters, resonators, delay lines, and some

analog signal processing circuits [22]-[31].-

C. Surface Wave

A surface wave is a wave that travels along a surface
without a lessening of its total time average Poynting
vector integrated over a large closed loop, i.c.,

W,———¢ﬁ-ﬁdc (30)
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DIPOLE

SUPERCONDUCTOR

Fig. 4. A dipole with a distance /4 above superconductor plane.

where P = 1 Re[E x H*], ¢ is a large closed loop on the
surface, and p is a unit radial vector tangent to the
surface and normal to ¢. For a surface wave, the power,
W, should be independent of the radius of the closed
loop, ¢. That is to say, as the 1ntegral loop extends to
infinity (p — o), |P| - A/p, ie., IEI or Z |H!—>B/f
where A and B are two constants. Normally, a surface
wave can be created between two planar surfaces of total
reflection, such as a dielectric layer or a substrate with
a conducting ground, and the physics of such a surface
wave is well understood [32], [33]. However, Sommerfeld,
in his treatment of radiation over a lossy ground, dis-
covered that a surface wave could also be obtained with
only a single dielectric interface. The configuration of
Sommerfeld’s analysis is depicted in Fig. 4. The potentials
of the eclectromagnetic fields, II, are represented by
Fourier—Bessel integrals, known as Sommerfeld’s inte-
grals [33]. Parts of these integrals may be represented by
residual integrals, which result in

2

ksu
KpHéZ)(pr)e"sz_k‘%Z, z>0 (31)

I, = 2j

2
Hsup=277j%H(§2)(pr)e—V”2"SZUPZ, z<0 (32)
where H{» is the cylindrical Hankel’s function of
the second kind and « is a known constant. Also, K, is
the wavenumber in the superconductor in the lower
half-space, and p is the pole of the integrand of the
Sommerfeld integrals:

1 1 1
7R R )
or
272
@
If |kgy,|> k,, we may approximate p by
1 k¢
p=k0[1 3 ksqu. (35)
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The above formulas were derived by Sommerfeld. The
asymptotic forms of (31) and (32), as |pr| >, are as
follows:

[2mj k2
: 2 2
T HP—jpr—yp —kOZ’

-2/ = 220 (36)
prooK
=2
m =2 2mi @e—jprﬂ/pz—k?upz <0. (37)
sup pr P > = Ve

At the z = 0 plane, the potentials satisfy the conditions of
a surface wave created by a localized source. If we inspect
(35) closely, we find that if the lower half-space were an
ordinary dielectric material, which has a positive dielec-
tric constant, then p < k,. Thus, the waves in (36) and
(37) would be fast waves, which would radiate and could
not become a surface wave. However, the waves can be
retarded by losses in the lower half-space. That is why the
Sommerfeld type of surface wave can only be excited if
there is loss in the medium. The situation is quite differ-
ent for a negative dielectric material or a superconductor.
Since in that case k2, <0 and p > k,, the waves in (36)
and (37) are naturally slow, and there is a natural surface
wave. However, for a superconducting state |k2 | > kg,

is practically equal to k,; therefore the surface wave, 1f
excited, would not be stable. One method of getting a
stable surface wave is to operate the system at a tempera-
ture near but below T,.. Even though in that region the
loss may increase, it may still be much less than conven-
tional conduction loss.

VII. CURRENT DENSITIES
Traditionally, Maxwell’s equations are studied in the
frequency domain, where a dispersive diclectric medium
is easily represented by the equation

VX H=joe(w)E. (38)

However, the real and imaginary parts of e(w) must be
related by the Kramers—Kronig relations, (11) and (12).
The Kramers—Kronig relations were derlved from the
causality relation between the flux density, D and E in
the time domain,

D(r) =[0°°G(7)E(z —7)dr (39)

where G(7)=0 for  <0. The Fourier transform of such
a function results in the Kramers—Kronig relations of (11)
and (12).

It is of intercst to obtain some physical insight by
relating e(w) and G(7). The time-domain representation
of (38) is

E(t—7)dr.
(40)

L 0 wdG(T
V><H=5f0 G(T)E(Z—T)d7'=f0 a(T)

The first integral of (40) represents the electric flux den-
sity; the second, obtained using integration by parts, rep-
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TABLE 1
CURRENT DENSITIES IN THE TIME AND FREQUENCY DOMAINS

; 8G(1)
Current Expression . inTD
Type in FD G(t)in TD Py
Displacement jweoﬁ €0(1)
Conduction ocE od(t)
d e .
Relaxation — w2eriu(t)
(jo+v.)
o2
Super —E w?u(t)
jo

resents the total current density. Consider the time-
domain Maxwell’s equation
VXH=joD+J. (41)
The first term of the right-hand side of (41) is the dis-
placement current, where D = ey E. The current density,
J may occur in different forms m dlfferent cases. For
conventional conducnon current, J= J = aE and in a
superconductor, J= J + J where
o €T, - . :

I =—""F and J =

5

jot,+1 jo

Eqws
E.

The corresponding functions G(¢) and 3G /3t of each
current are listed in Table 1.

It is obvious that the terms G(¢) = €58(¢) and 3G /9t =
08(t) correspond to the displacement and conduction
current, respectively. In those cases, the flux densities and
current response to the electric field are instantaneous
and they disappear as soon as the electric field disap-
pears. The normal current corresponds to an exponen-
tially decaying dG /dt term; i.e., the current depends not
only on the instantaneous value of the field but also on
the history of the field. Hence, it does not obey Ohms
law. In view of the possible confusion between the normal
current and the ohmic conduction current, we have re-
named the normal current the relaxation current in the
table. This term contains inertial effects while the conven-
tional conduction current does not. The supercurrent is
the limiting case of the “relaxation current” when y,(=
1/7,)—0, ie., the case when the relaxation time be-
comes infinite. We may consider the conduction current
and supercurrent as two limiting cases of the “relaxation
current,” the conduction current for w — 0 and the super-
current for y,— 0. In the former, the relaxation time
tends to zero and is collision dominated (w2 /(jw + v,) —
w? /v, =ne’/my,=0o). In the latter, the relaxation time
is infinite and is purely inertial. They would respond very
differently to electromagnetic fields, a fact that has also
been discussed by Pippard [34].

The above limiting cases lead us to believe that the
“perfect conductor” cannot exist except at dc since v,
must be much larger than o for the “relaxation current”
to become conduction current.
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VII. ComMpUTATIONAL CONSIDERATIONS

In Section IV, we have mentioned that the solutions of
electromagnetic boundary value problems are not any
more complicated for a superconductor than for any
other penetrable medium, once it is treated as a negative

_ dielectric material. While that statement is obviously true

in the frequency domain, it is not so obvious in the time
domain, because a superconductive medium is dispersive.
The complication in the time-domain computation involv-
ing a superconductor arises from the necessity of comput-
ing the convolution integral,

(42)

where ¢ is a constant. In reality, the integral of (42) can
be calculated without much overhead in storage for past
electric fields. A change of variables leads to

D(t)= cfwe_WE(t —r)dr
0

D(t)=ce [ “emtE(¢) de=—ce ™ [ emE(£) de.
t — 0o
(43)

The integral in (43) can be “accumulated” in the process
of time-domain computation. Since vy, is a positive num-
ber, the multiplier e ™7+ becomes smaller and the integra-
tion term gets larger as ¢ increases. Therefore (43) is not
a stable form for computation. In the numerical integra-
tion of (43), however, a little manipulation results in

D(nAt) = D[(n—1)At]e 75 — cE(nAt) At (44)

which gives a very stable recursive formula. D(nAt) is the
field at the nth time step. Since a superconducting medium
described by the two-fluid model has the form of (42), its
time-domain computation is quite simple even though the
medium is dispersive.

IX. CoNcLusioN

This paper presents an understanding of superconduc-
tive materials in the context of classical electrodynamics.
The basics of its electromagnetic properties are presented
and a possible surface wave phenomenon is suggested.
The relationships between current densities and electric
fields are depicted in the time domain. A new interpreta-
tion of the Meissner effect has been presented. The
phrases “negative dielectric” and ‘“‘relaxation current”
may sound controversial and unnecessary. However, they
are introduced to avoid confusion for most electromag-
netic engineers, who have a preconceived understanding
of the name “conductor” and the implications of the
name “normal conductor.” The electromagnetic interpre-
tation of the Meissner effect is an effort to remove the
mystery associated with superconductors, which, some-
how, seem to defy the logic of classical electromagnetic
theory. Although the physics of superconductors are stud-
ied at the quantum level, the macroscopic properties of
the material from which it is derived must be consistent
with the classical theory of electromagnetics. We believe
the discussions presented in this paper will be helpful to
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electrical engineers involved with the applications of su-
peérconductors. Solving classical electrodynamic boundary
value problems will be an unavoidable step in the even-
tual applications of these materials in microwave and
millimeter-wave devices and electronics.
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